Главная
Новости
Строительство
Ремонт
Дизайн и интерьер




07.12.2022


02.12.2022


02.12.2022


29.11.2022


29.11.2022





Яндекс.Метрика

Задача Ламберта

22.10.2022

Задача Ламберта — в небесной механике краевая задача для дифференциального уравнения

r ¨ = − μ ⋅ r r 3 , r = | r |   {displaystyle {ddot {mathbf {r} }}=-mu cdot {frac {mathbf {r} }{r^{3}}},quad r=left|mathbf {r} ight| } ,

для которого в общем случае решения являются кеплеровскими орбитами. В более точной формулировке:

Для двух различных моментов времени   t 1 , t 2   {displaystyle t_{1},,t_{2} } и двух заданных векторов r 1 , r 2 {displaystyle mathbf {r} _{1},,mathbf {r} _{2}} найти решение r ( t ) {displaystyle mathbf {r} (t)} , удовлетворяющее указанному дифференциальному уравнению и краевым условиям

r ( t 1 ) = r 1 , r ( t 2 ) = r 2 . {displaystyle mathbf {r} (t_{1})=mathbf {r} _{1},quad mathbf {r} (t_{2})=mathbf {r} _{2}.}