Главная
Новости
Строительство
Ремонт
Дизайн и интерьер




29.11.2022


29.11.2022


29.11.2022


29.11.2022


28.11.2022





Яндекс.Метрика

Октаэдральные соты порядка 4

26.07.2022

В гиперболическом пространстве размерности 3 восьмиугольные соты порядка 4 — правильные паракомпактные соты. Они называются паракомпактными, поскольку имеют бесконечные вершинные фигуры со всеми вершинами как идеальные точки на бесконечности. Если многогранник задан символом Шлефли {3,4,4}, он имеет четыре октаэдра {3,4} вокруг каждого ребра и бесконечное число октаэдров вокруг каждой вершины в квадратном паркете {4,4}, в качестве расположения вершин.

Геометрические соты — это заполняющие пространство многогранники или ячейки большей размерности. Заполнение происходит так, что между ними не остаётся зазоров. Это пример более общего математического понятия мозаики или замощения в пространстве любой размерности.

Соты обычно строятся в обычном евклидовом («плоском») пространстве подобно выпуклым однородным сотам. Их можно построить также в неевклидовых пространствах, такие как однородные гиперболические соты. Любой конечный однородный многогранник может быть спроецирован на его описанную сферу для образования однородных сот в сферическом пространстве.

Симметрия

Построение с половинной симметрией, [3,4,4,1+], существует как {3,41,1}, с чередованием двух видов (цветов) октаэдральных ячеек. ↔ . Второе построение с половинной симметрией, [3,4,1+,4]: ↔ . Более высокий индекс симметрии, [3,4,4*], индекс 8, существует с пирамидальной фундаментальной областью, [((3,∞,3)),((3,∞,3))]: .

Эти соты содержат , , которые замощают 2-гиперциклические поверхности наподобие паракомпактных мозаик или

Связанные многогранники и соты

Многогранник входит в 15 правильных гиперболических сот в 3-мерном пространстве, 11 из которых, подобно этим сотам, паракомпактны и имеют бесконечные ячейки или вершинные фигуры.

Имеется пятнадцать однородных сот в [4,4,3] семействе групп Коксетера, включая эту однородную форму.

Соты являются частью последовательности сот с вершинной фигурой в виде квадратного паркета:

Соты являются частью последовательности правильных четырёхмерных многогранников и сот с октаэдральными ячейками.

Спрямлённые восьмиугольные соты порядка 4

Спрямлённые восьмиугольные соты порядка 4, t1{3,4,4}, имеют фасеты в виде кубооктаэдра и квадратного паркета, с квадратной пирамидой в качестве вершинной фигуры.

Усечённые восьмиугольные соты порядка 4

Усечённые восьмиугольные соты порядка 4, t0,1{3,4,4}, имеют фасеты в виде усечённого октаэдра и квадратного паркета с квадратной пирамидой в качестве вершинной фигуры.

Скошенные восьмиугольные соты порядка 4

Скошенные восьмиугольные соты порядка 4, t0,2{3,4,4}, имеют грани в виде ромбокубооктаэдра и квадратного паркета с вершинной фигурой в виде треугольной призмы.

Скошено-усечённые восьмиугольные соты порядка 4

Скошено-усечённые восьмиугольные соты порядка 4, t0,1,2{3,4,4}, имеют фасеты в виде усечённого кубооктаэдра и квадратного паркета с тетраэдром в качестве вершинной фигуры.

Струг-усечённые восьмиугольные соты порядка 4

Струг-усечённые восьмиугольные соты порядка 4, t0,1,3{3,4,4}, имеют фасеты в виде усечённого октаэдра и квадратного паркета с квадратной пирамидой в качестве вершинной фигуры.

Плосконосые восьмиугольные соты порядка 4

Плосконосые восьмиугольные соты порядка 4, s{3,4,4}, имеют диаграмму Коксетера — Дынкина . Они являются равнобедренными сотами с квадратными пирамидами, квадратными мозаиками и икосаэдрами.