Главная
Новости
Строительство
Ремонт
Дизайн и интерьер




22.09.2021


22.09.2021


22.09.2021


22.09.2021


20.09.2021





Яндекс.Метрика

Водоочистка

06.03.2021

Водоочистка (или очистка воды) — процесс удаления нежелательных химических веществ, биологических загрязнителей, взвешенных твёрдых частиц и газов, загрязняющих пресную воду. Окончательным результатом процесса очистки является получение питьевой воды, пригодной для использования с определённой целью. В зависимости от цели водоочистки, употребляются и другие термины: водоподготовка и очистка сточных вод. Наиболее тщательно вода очищается и обеззараживается в процессе подготовки к использованию человеком для бытовых нужд (питьевая вода). Кроме того, очистка воды может производиться и для других целей, отвечающих другим требованиям, например, для медицинских целей или для применения в фармакологической, химической или других отраслях промышленности. В целом технологический процесс, используемый для очистки воды включает в себя физические методы (фильтрация, седиментация, обратный осмос, дистилляция), биологические методы (организмы, поедающие мусор), химические методы (флокуляция, ионный обмен, хлорирование и использование электромагнитного излучения, например ультрафиолетового излучения).

Цель

Согласно приведённым в докладе Всемирной организации здравоохранения данным, в 2007 году 1,1 млрд человек не имеют доступа к улучшенным источникам водоснабжения, из 4 млрд случаев диареи — 88 % вызваны использованием небезопасной воды, а также неадекватной санитарией и гигиеной. Кроме того, по данным экспертов ВОЗ ежегодно 1,8 млн человек умирают от диарейных заболеваний, из них в 94 % случаев развитие диареи можно предотвратить путём изменения условий окружающей среды, включая доступ населения к безопасной (очищенной и подготовленной) воде.

Использование относительно простых методов очистки и подготовки питьевой воды для бытовых нужд, например, хлорирования, применение фильтров для воды, дезинфекция солнечными лучами (УФО), а также хранение запасов питьевой воды в безопасных ёмкостях могло бы ежегодно спасти огромное количество человеческих жизней. Таким образом, основной целью организаций здравоохранения в развивающихся странах является снижение случаев смертности от болезней, вызванных употреблением некачественной питьевой воды.

История

Первые опыты по фильтрации воды были сделаны в 17 веке. Сэр Фрэнсис Бэкон попытался опреснить морскую воду, пропуская ее через песчаный фильтр. Хотя его эксперимент не увенчался успехом, он положил начало новому интересу к этой области. Отцы микроскопии, Антони ван Левенгук и Роберт Гук, использовали недавно изобретенный микроскоп, чтобы впервые наблюдать небольшие материальные частицы, которые лежали во взвешенном состоянии в воде, заложив основу для будущего понимания патогенов, переносимых водой.

Песчаный фильтр

Первое задокументированное использование песчаных фильтров для очистки воды относится к 1804 году, когда владелец отбеливателя в Пейсли, Шотландия, Джон Гибб, установил экспериментальный фильтр, продавая его ненужные излишки общественности. Этот метод был усовершенствован в последующие два десятилетия инженерами, работавшими в частных водопроводных компаниях, и достиг своей кульминации в первом в мире очищенном общественном водоснабжении, установленном инженером Джеймсом Симпсоном для Chelsea Waterworks Company в Лондоне в 1829 году, и дизайн сети был широко скопирован по всей Великобритании в последующие десятилетия.

Практика очистки воды вскоре стала общепринятой и распространенной, и достоинства этой системы стали совершенно очевидны после исследований врача Джона Сноу во время вспышки холеры на Брод-стрит в 1854 году. Сноу скептически относился к господствовавшей тогда теории миазмов, утверждавшей, что болезни вызываются ядовитым "дурным воздухом". Хотя микробная теория болезни еще не была разработана, наблюдения Сноу привели его к отрицанию преобладающей теории. Его эссе 1855 года «О способе передачи холеры» убедительно продемонстрировало роль водоснабжения в распространении эпидемии холеры в Сохо с использованием точечной карты распределения и статистических доказательств, чтобы проиллюстрировать связь между качеством источника воды и случаями заболевания холерой. Его данные убедили местный совет отключить водяной насос, что быстро положило конец вспышке.

Закон о воде Метрополии впервые ввел регулирование деятельности водопроводных компаний в Лондоне, включая минимальные стандарты качества воды. Закон "предусматривал обеспечение снабжения Метрополии чистой и здоровой водой" и требовал, чтобы вся вода "эффективно фильтровалась" с 31 декабря 1855 г. За этим последовало законодательство об обязательной проверке качества воды, включая всесторонние химические анализы, в 1858 г. Этот закон создал мировой прецедент для аналогичных государственных вмешательств в области общественного здравоохранения по всей Европе. Тогда же была образована Столичная комиссия по канализации, по всей стране была принята фильтрация воды, а над Теддингтонским шлюзом были установлены новые водозаборы на Темзе. Автоматические напорные фильтры, в которых вода подается под давлением через систему фильтрации, были изобретены в 1899 году в Англии.

Хлорирование воды

Джон Сноу был первым, кто успешно использовал хлор для дезинфекции водоснабжения в Сохо, что способствовало распространению вспышки холеры. Уильям Сопер также использовал хлорированную известь для очистки сточных вод, производимых больными брюшным тифом в 1879 году.

В статье, опубликованной в 1894 году, Мориц Траубе официально предложил добавлять в воду хлорид извести (гипохлорит кальция), чтобы сделать ее "свободной от микробов". Два других исследователя подтвердили выводы Траубе и опубликовали свои работы в 1895 году. Первые попытки внедрения хлорирования воды на очистных сооружениях были предприняты в 1893 году в Гамбурге, Германия, а в 1897 году город Мейдстон, Англия, был первым, кто очистил все свое водоснабжение хлором.

Постоянное хлорирование воды началось в 1905 году, когда неисправный медленный песчаный фильтр и загрязненный водопровод привели к серьезной эпидемии брюшного тифа в Линкольне, Англия. Доктор Александр Крукшенк Хьюстон использовал хлорирование воды, чтобы остановить эпидемию. Его установка подавала в обрабатываемую воду концентрированный раствор хлорида извести. Хлорирование воды помогло остановить эпидемию, и в качестве меры предосторожности хлорирование продолжалось до 1911 года, когда было введено новое водоснабжение.

Первое непрерывное использование хлора в Соединенных Штатах для дезинфекции имело место в 1908 году на водохранилище Бунтон (на реке Рокуэй), которое служило источником снабжения Джерси-Сити, штат Нью-Джерси. Хлорирование достигалось контролируемыми добавками разбавленных растворов хлорида извести (гипохлорита кальция) в дозах от 0,2 до 0,35 промилле. Процесс лечения был задуман доктором Джоном Л. Лил и хлорирующая установка были спроектированы Джорджем Уорреном Фуллером. В течение следующих нескольких лет дезинфекция хлором с использованием хлорида извести была быстро внедрена в системы питьевой воды по всему миру.

Метод очистки питьевой воды с помощью сжатого сжиженного хлорного газа был разработан британским офицером индийской медицинской службы Винсентом Б. Несфилдом в 1903 году. В его учётной записи было сказано:

Мне пришло в голову, что газообразный хлор может быть признан удовлетворительным... если бы можно было найти подходящие средства для его использования.... Следующий важный вопрос заключался в том, как сделать газ портативным. Это можно было бы сделать двумя способами: Сжижая его и храня в железных сосудах, облицованных свинцом, имеющих струю с очень тонким капиллярным каналом и снабженных краном или завинчивающейся крышкой. Кран включается, и в цилиндр помещается необходимое количество воды. Хлор пузырится, и через десять-пятнадцать минут вода становится абсолютно безопасной. Этот метод был бы полезен в больших масштабах, как и для служебных тележек с водой.

Майор армии США Карл Роджерс Дарнолл, профессор химии в Военной медицинской школе, впервые продемонстрировал это на практике в 1910 году. Вскоре после этого майор Уильям Л. Лайстер из Медицинского департамента армии использовал раствор гипохлорита кальция в льняном мешке для обработки воды. В течение многих десятилетий метод Листера оставался стандартом для сухопутных войск США в полевых условиях и в лагерях, реализованный в виде знакомой сумки Листера (также пишется сумка Листера). Эта работа легла в основу современных систем очистки городской воды.

Очистка

Предварительная обработка

  • Откачка и удержание – Большая часть воды должна быть откачана из источника или направлена в трубы или резервуары. Чтобы избежать добавления загрязняющих веществ в воду, эта физическая инфраструктура должна быть сделана из соответствующих материалов и построена таким образом, чтобы не произошло случайного загрязнения.
  • Первый шаг в очистке поверхностных вод заключается в удалении крупного мусора, такого как палочки, листья, мусор и другие крупные частицы, которые могут помешать последующим этапам очистки. Большинство глубоких подземных вод не нуждаются в экранировании перед другими этапами очистки.
  • Хранение – Вода из рек может также храниться в прибрежных резервуарах в течение периодов от нескольких дней до многих месяцев, чтобы обеспечить естественную биологическую очистку. Это особенно важно, если обработка производится медленными песчаными фильтрами. Водохранилища также служат буфером против коротких периодов засухи или позволяют поддерживать водоснабжение во время временных инцидентов загрязнения в реке-источнике.
  • Предварительное хлорирование – На многих заводах поступающую воду хлорировали, чтобы свести к минимуму рост загрязняющих организмов на трубопроводах и резервуарах. Из-за потенциального неблагоприятного воздействия на качество это в значительной степени было прекращено.
  • Регулировка рН

    Чистая вода имеет рН, близкий к 7 (ни щелочной, ни кислой). Морская вода может иметь значения рН в диапазоне от 7,5 до 8,4 (умеренно щелочная). Пресная вода может иметь широкий диапазон значений рН в зависимости от геологии водосборного бассейна или водоносного горизонта и влияния поступления загрязняющих веществ (кислотных дождей). Если вода кислая (ниже 7), то для повышения рН в процессе очистки воды можно добавить известь, кальцинированную соду или гидроксид натрия. Добавление извести увеличивает концентрацию ионов кальция, тем самым повышая жесткость воды. Для сильно кислых вод дегазаторы с принудительной тягой могут быть эффективным способом повышения рН, удаляя растворенный углекислый газ из воды. Создание щелочной воды помогает эффективно работать процессам коагуляции и флокуляции, а также помогает свести к минимуму риск растворения свинца из свинцовых труб и свинцового припоя в трубопроводной арматуре. Достаточная щелочность также снижает коррозионную стойкость воды к железным трубам. Кислоту (углекислоту, соляную кислоту или серную кислоту) можно добавлять в щелочные воды в некоторых случаях для снижения рН. Щелочная вода (выше рН 7,0) не обязательно означает, что свинец или медь из водопроводной системы не будут растворены в воде. Способность воды осаждать карбонат кальция для защиты металлических поверхностей и снижения вероятности растворения токсичных металлов в воде зависит от рН, содержания минералов, температуры, щелочности и концентрации кальция.

    Коагуляция и флокуляция

    Одним из первых шагов в большинстве традиционных процессов очистки воды является добавление химических веществ, способствующих удалению взвешенных в воде частиц. Частицы могут быть неорганическими, такими как глина и ил, или органическими, такими как водоросли, бактерии, вирусы, простейшие и природные органические вещества. Неорганические и органические частицы вносят свой вклад в мутность и цвет воды.

    Добавление неорганических коагулянтов, таких как сульфат алюминия (или квасцы) или соли железа (III), такие как хлорид железа (III), вызывает несколько одновременных химических и физических взаимодействий на частицах и между ними. В течение нескольких секунд отрицательные заряды на частицах нейтрализуются неорганическими коагулянтами. Также в течение нескольких секунд начинают образовываться осадки гидроксида металла из ионов железа и алюминия. Эти осадки объединяются в более крупные частицы в результате естественных процессов, таких как броуновское движение и индуцированное перемешивание, которое иногда называют флокуляцией. Аморфные гидроксиды металлов известны как "флок". Крупные аморфные гидроксиды алюминия и железа (III) адсорбируют и опутывают частицы в суспензии и облегчают удаление частиц последующими процессами осаждения и фильтрации.

    Гидроксиды алюминия образуются в довольно узком диапазоне рН, как правило: от 5,5 до 7,7. Гидроксиды железа (III) могут образовываться в более широком диапазоне рН, включая уровни рН ниже, чем эффективны для квасцов, как правило: от 5,0 до 8,5.

    В литературе существует много споров и путаницы по поводу использования терминов коагуляция и флокуляция: где заканчивается коагуляция и начинается флокуляция? В установках очистки воды обычно используется высокоэнергетический, быстрый процесс смешивания (время выдержки в секундах), при котором добавляются химические вещества-коагулянты, а затем флокуляционные бассейны (время выдержки колеблется от 15 до 45 минут), где низкие энергозатраты превращают большие лопасти или другие мягкие смесительные устройства для усиления образования хлопьев. На самом деле процессы коагуляции и флокуляции продолжаются после добавления коагулянтов солей металлов.

    Органические полимеры были разработаны в 1960-х годах в качестве вспомогательных средств для коагулянтов и, в некоторых случаях, в качестве замены коагулянтов неорганических солей металлов. Синтетические органические полимеры - это высокомолекулярные соединения, которые несут отрицательные, положительные или нейтральные заряды. Когда органические полимеры добавляются в воду с частицами, высокомолекулярные соединения адсорбируются на поверхности частиц и через межчастичные мостики сливаются с другими частицами, образуя хлопья. ПолиДАДМАХ - популярный катионный (положительно заряженный) органический полимер, используемый в установках очистки воды.

    Седиментация

    Воды, выходящие из флокуляционного бассейна, могут попадать в осадочный бассейн, также называемый осветлителем или отстойником. Это большой резервуар с низкими скоростями воды, что позволяет хлопьям оседать на дно. Седиментационный бассейн лучше всего расположен близко к флокуляционному бассейну, поэтому транзит между двумя процессами не допускает оседания или распада хлопьев. Осадочные бассейны могут быть прямоугольными, где вода течет из конца в конец, или круглыми, где поток идет от центра наружу. Отток осадочного бассейна обычно проходит через плотину, поэтому выходит только тонкий верхний слой воды — самый дальний от ила.

    В 1904 году Аллен Хейзен показал, что эффективность процесса осаждения зависит от скорости осаждения частиц, потока через резервуар и площади поверхности резервуара. Отстойники обычно проектируются в диапазоне скоростей переполнения от 0,5 до 1,0 галлона в минуту на квадратный фут (или от 1,25 до 2,5 литра на квадратный метр в час). Как правило, эффективность бассейна седиментации не зависит от времени задержания или глубины бассейна. Хотя глубина бассейна должна быть достаточной, чтобы водные потоки не нарушали ил и не способствовали взаимодействию осевших частиц. Поскольку концентрация частиц в осевшей воде увеличивается вблизи поверхности осадка на дне резервуара, скорость осаждения может увеличиваться из-за столкновений и агломерации частиц. Типичное время задержки осадконакопления колеблется от 1,5 до 4 часов, а глубина бассейна - от 10 до 15 футов (от 3 до 4,5 метров).

    Наклонные плоские пластины или трубки могут быть добавлены к традиционным отстойникам для улучшения производительности удаления частиц. Наклонные пластины и трубки резко увеличивают площадь поверхности, доступную для удаления частиц, в соответствии с оригинальной теорией Хейзена. Площадь поверхности земли, занимаемая осадочным бассейном с наклонными пластинами или трубами, может быть намного меньше, чем в обычном осадочном бассейне.

    Хранение и удаление осадка

    Когда частицы оседают на дно отстойника, на дне резервуара образуется слой шлама, который необходимо удалить и обработать. Количество образующегося осадка значительно, часто от 3 до 5 процентов от общего объема воды, подлежащей очистке. Затраты на очистку и утилизацию осадка могут повлиять на эксплуатационные расходы водоочистной установки. Отстойник может быть оснащен механическими очистительными устройствами, которые постоянно очищают его дно, или бассейн может периодически выводиться из эксплуатации и очищаться вручную.